DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LT3682EDD 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
제조사
LT3682EDD Datasheet PDF : 24 Pages
First Prev 21 22 23 24
LT3682
APPLICATIONS INFORMATION
PCB Layout
For proper operation and minimum EMI, care must be taken
during printed circuit board layout. Figure 10 shows the
recommended component placement with trace, ground
plane and via locations. Note that large, switched currents
flow in the LT3682’s VIN, SW and PGND pins, the catch
diode and the input capacitor (CIN). The loop formed by
these components should be as small as possible. These
components, along with the inductor and output capacitor
(COUT), should be placed on the same side of the circuit
board, and their connections should be made on that layer.
All connections to GND should be made at a common
star ground point or directly to a local, unbroken ground
plane below these components. The SW and BOOST nodes
should be laid out carefully to avoid interference. If the
part is synchronized externally using the SYNC pin, care
must be taken laying out this signal to avoid interference
with sensitive nodes, especially VC, FB, and RT. Finally,
keep the FB, RT, and VC nodes small so that the ground
traces will shield them from the SW and BOOST nodes.
The exposed pad Pin 13 on the bottom of the package
acts as a heat sink and must be soldered to the ground
node. To keep thermal resistance low, extend the ground
plane as much as possible and add thermal vias under and
near the LT3682 to any additional ground planes within
the circuit board and on the bottom side. Keep in mind
that the thermal design must keep the junctions of the
IC below the specified absolute maximum temperature
of 125°C.
High Temperature Considerations
The PCB must provide heat sinking to keep the LT3682
cool. The exposed pad on the bottom of the package must
be soldered to a copper area, which in turn should be
tied to large copper layers below with thermal vias; these
layers will spread the heat dissipated by the LT3682. Place
additional vias to reduce thermal resistance further. With
these steps, the thermal resistance from die (or junction)
to ambient can be reduced to θJA = 35°C/W or less. With
100 LFPM airflow, this resistance can fall by another 25%.
Further increases in airflow will lead to lower thermal
resistance. Because of the large output current capability of
VOUT
C2
GND
L
D1
C1
VIN
GND
3682 F10
Figure 10. A Good PCB Layout Ensures Proper, Low EMI Operation
the LT3682, it is possible to dissipate enough heat to raise
the junction temperature beyond the absolute maximum of
125°C. When operating at high ambient temperatures, the
maximum load current should be derated as the ambient
temperature approaches these maximums. If the junction
temperature reaches the thermal shutdown threshold, the
part will stop switching to prevent internal damage due
to overheating.
Power dissipation within the LT3682 can be estimated
by calculating the total power loss from an efficiency
measurement. The die temperature is calculated by
multiplying the LT3682 power dissipation by the thermal
resistance from junction to ambient.
Other Linear Technology Publications
Application Notes 19, 35 and 44 contain more detailed
descriptions and design information for buck regulators
and other switching regulators. The LT1376 data sheet
has a more extensive discussion of output ripple, loop
compensation and stability testing. Design Note 318
shows how to generate a bipolar output supply using a
buck regulator.
3682f
21

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]