DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LT1374CFE 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
제조사
LT1374CFE
Linear
Linear Technology Linear
LT1374CFE Datasheet PDF : 32 Pages
First Prev 21 22 23 24 25 26 27 28 29 30 Next Last
LT1374
APPLICATIONS INFORMATION
What About a Resistor in the Compensation Network?
It is common practice in switching regulator design to
add a “zero” to the error amplifier compensation to
increase loop phase margin. This zero is created in the
external network in the form of a resistor (RC) in series
with the compensation capacitor. Increasing the size of
this resistor generally creates better and better loop
stability, but there are two limitations on its value. First,
the combination of output capacitor ESR and a large
value for RC may cause loop gain to stop rolling off
altogether, creating a gain margin problem. An approxi-
mate formula for RC where gain margin falls to zero is:
GMA = Error amplifier transconductance (2000µMho)
If a computer simulation of the LT1374 showed that a
series compensation resistor of 3k gave best overall loop
response, with adequate gain margin, the resulting VC pin
ripple voltage with VIN = 10V, VOUT = 5V, ESR = 0.1,
L = 10µH, would be:
GMP = Transconductance of power stage = 5.3A/V
GMA = Error amplifier transconductance = 2(10–3)
ESR = Output capacitor ESR
2.42 = Reference voltage
With VOUT = 5V and ESR = 0.03, a value of 6.5k for RC
would yield zero gain margin, so this represents an upper
limit. There is a second limitation however which has
nothing to do with theoretical small signal dynamics.
This resistor sets high frequency gain of the error ampli-
fier, including the gain at the switching frequency. If
switching frequency gain is high enough, output ripple
voltage will appear at the VC pin with enough amplitude
to muck up proper operation of the regulator. In the
marginal case, subharmonic switching occurs, as evi-
denced by alternating pulse widths seen at the switch
node. In more severe cases, the regulator squeals or
hisses audibly even though the output voltage is still
roughly correct. None of this will show on a theoretical
Bode plot because Bode is an amplitude insensitive
analysis. Tests have shown that if ripple voltage on the VC
is held to less than 100mVP-P, the LT1374 will be well
behaved. The formula below will give an estimate of VC
ripple voltage when RC is added to the loop, assuming
that RC is large compared to the reactance of CC at
500kHz.
This ripple voltage is high enough to possibly create
subharmonic switching. In most situations a compromise
value (< 2k in this case) for the resistor gives acceptable
phase margin and no subharmonic problems. In other
cases, the resistor may have to be larger to get acceptable
phase response, and some means must be used to control
ripple voltage at the VC pin. The suggested way to do this
is to add a capacitor (CF) in parallel with the RC/CC network
on the VC pin. Pole frequency for this capacitor is typically
set at one-fifth of switching frequency so that it provides
significant attenuation of switching ripple, but does not
add unacceptable phase shift at loop unity-gain frequency.
With RC = 3k,
How Do I Test Loop Stability?
The “standard” compensation for LT1374 is a 1.5nF
capacitor for CC, with RC = 0. While this compensation will
work for most applications, the “optimum” value for loop
compensation components depends, to various extent, on
parameters which are not well controlled. These include
inductor value (±30% due to production tolerance, load
1374fd
23

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]