DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MAX5064AATC(2005) 데이터 시트보기 (PDF) - Maxim Integrated

부품명
상세내역
제조사
MAX5064AATC
(Rev.:2005)
MaximIC
Maxim Integrated MaximIC
MAX5064AATC Datasheet PDF : 19 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
125V/2A, High-Speed,
Half-Bridge MOSFET Drivers
Undervoltage Lockout
Both the high- and low-side drivers feature undervolt-
age lockout (UVLO). The low-side driver’s UVLOLOW
threshold is referenced to GND and pulls both driver
outputs low when VDD falls below 6.8V. The high-side
driver has its own undervoltage lockout threshold
(UVLOHIGH), referenced to HS, and pulls DH low when
BST falls below 6.4V with respect to HS.
During turn-on, once VDD rises above its UVLO thresh-
old, DL starts switching and follows the IN_L logic input.
At this time, the bootstrap capacitor is not charged and
the BST-to-HS voltage is below UVLOBST. For synchro-
nous buck and half-bridge converter topologies, the
bootstrap capacitor can charge up in one cycle and
normal operation begins in a few microseconds after the
BST-to-HS voltage exceeds UVLOBST. In the two-switch
forward topology, the BST capacitor takes some time (a
few hundred microseconds) to charge and increase its
voltage above UVLOBST.
The typical hysteresis for both UVLO thresholds is 0.5V.
The bootstrap capacitor value should be selected care-
fully to avoid unintentional oscillations during turn-on
and turn-off at the DH output. Choose the capacitor
value about 20 times higher than the total gate capaci-
tance of the MOSFET. Use a low-ESR-type X7R dielec-
tric ceramic capacitor at BST (typically a 0.1µF ceramic
is adequate) and a parallel combination of 1µF and
0.1µF ceramic capacitors from VDD to GND
(MAX5062_, MAX5063_) or to PGND (MAX5064_). The
high-side MOSFET’s continuous on-time is limited due
to the charge loss from the high-side driver’s quiescent
current. The maximum on-time is dependent on the size
of CBST, IBST (50µA max), and UVLOBST.
Output Driver
The MAX5062/MAX5063/MAX5064 have low 2.5
RDS_ON p-channel and n-channel devices (totem pole)
in the output stage. This allows for a fast turn-on and
turn-off of the high gate-charge switching MOSFETs.
The peak source and sink current is typically 2A.
Propagation delays from the logic inputs to the driver
outputs are matched to within 8ns. The internal p- and
n-channel MOSFETs have a 1ns break-before-make
logic to avoid any cross conduction between them. This
internal break-before-make logic eliminates shoot-
through currents reducing the operating supply current
as well as the spikes at VDD. The DL voltage is approxi-
mately equal to VDD and the DH-to-HS voltage, a diode
drop below VDD, when they are in a high state and to
zero when in a low state. The driver RDS_ON is lower at
higher VDD. Lower RDS_ON means higher source and
sink currents and faster switching speeds.
Internal Bootstrap Diode
An internal diode connects from VDD to BST and is
used in conjunction with a bootstrap capacitor external-
ly connected between BST and HS. The diode charges
the capacitor from VDD when the DL low-side switch is
on and isolates VDD when HS is pulled high as the high-
side driver turns on (see the Typical Operating Circuit).
The internal bootstrap diode has a typical forward volt-
age drop of 0.9V and has a 10ns typical turn-off/turn-on
time. For lower voltage drops from VDD to BST, connect
an external Schottky diode between VDD and BST.
Programmable Break-Before-Make
(MAX5064)
Half-bridge and synchronous buck topologies require
that the high- or low-side switch be turned off before
the other switch is turned on to avoid shoot-through
currents. Shoot-through occurs when both high- and
low-side switches are on at the same time. This condi-
tion is caused by the mismatch in the propagation
delay from IN_H/IN_L to DH/DL, driver output imped-
ance, and the MOSFET gate capacitance. Shoot-
through currents increase power dissipation, radiate
EMI, and can be catastrophic, especially with high
input voltages.
The MAX5064 offers a break-before-make (BBM) fea-
ture that allows the adjustment of the delay from the
input to the output of each driver. The propagation
delay from the rising edges of IN_H and IN_L to the ris-
ing edges of DH and DL, respectively, can be pro-
grammed from 16ns to 95ns. Note that the BBM time
(tBBM) has a higher percentage error at lower value
because of the fixed comparator delay in the BBM
block. The propagation delay mismatch (tMATCH_)
needs to be included when calculating the total tBBM
error. The low 8ns (maximum) delay mismatch reduces
the total tBBM variation. Use the following equations to
calculate RBBM for the required BBM time and
tBBM_ERROR:
RBBM
=
10kΩ ×
⎝⎜
tBBM
8ns
1⎞⎠⎟
for RBBM
<
200k
tBBM_ERROR = 0.15 × tBBM + tMATCH_
where tBBM is in nanoseconds.
10 ______________________________________________________________________________________

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]