DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ACPL-W314-560E(2009) 데이터 시트보기 (PDF) - Avago Technologies

부품명
상세내역
제조사
ACPL-W314-560E
(Rev.:2009)
AVAGO
Avago Technologies AVAGO
ACPL-W314-560E Datasheet PDF : 13 Pages
First Prev 11 12 13
Applications Information
Eliminating Negative IGBT Gate Drive
To keep the IGBT firmly off, the ACPL-P314/W314 has a
very low maximum VOL specification of 1.0 V. Minimizing
Rg and the lead inductance from the ACPL-P314/W314
to the IGBT gate and emitter (possibly by mounting the
ACPL-P314/W314 on a small PC board directly above the
IGBT) can eliminate the need for negative IGBT gate drive
in many applications as shown in Figure 19. Care should
be taken with such a PC board design to avoid routing
the IGBT collector or emitter traces close to the ACPL-
P314/W314 input as this can result in unwanted coupling
of transient signals into the input of ACPL-P314/W314
and degrade performance. (If the IGBT drain must be
routed near the ACPL-P314/W314 input, then the LED
should be reverse biased when in the off state, to prevent
the transient signals coupled from the IGBT drain from
turning on the ACPL-P314/W314.
Selecting the Gate Resistor (Rg)
Step 1: Calculate Rg minimum from the IOL peak specifi-
cation. The IGBT and Rg in Figure 19 can be analyzed as
a simple RC circuit with a voltage supplied by the ACPL-
P314/W314.
R g V C V OL
IOLPEAK
32 5
=
0.6
= 32
The VOL value of 5 V in the previous equation is the VOL at
the peak current of 0.6A. (See Figure 6).
PT =PE +PO
PE = IF V F DutyCycle
P O = P O(BIAS) + P O(SWITCHING) = ICC V CC + E SW (Rg; Q g ) f
= (I CCBIAS + K ICC Q g f ) VCC + E SW (Rg ; Q g ) f
R g V C V OL
IOLPEAK
32 5
SteRpg 2:=VCCh0e.6cVkOLthe ACPL-P314/W314 power dissipation
and inc=reI3aO2LsPeEAKRg if necessary. The ACPL-P314/W314 total
power
power
(d=PisE3s)20iap.6na5dtiothne(PoTu)tipsuetqpuoawl teor
the sum
(PO).
of
the
emitter
P T = P=E +32PO
PE = IF V F DutyCycle
P O = P O(BIAS) + P O(SWITCHING) = ICC V CC + E SW (Rg; Q g ) f
PT
PE
===IP(FIECC+BVIAPFSO+DKuItCyCCyclQeg
f) VCC
+ E SW
(R g
;Qg )f
wacinrhPcdeOuriK=e=tIPCi(KnICOCIC(CBFBCiIIiAsAgSS·)ua+Q+rPgKecOIC(1SCnfW9sIiTstwCQaHtIignhNtGhte) f=Ioi)FnfIcC(VCwr0CeC.o0a+Vr0ssCEe1CtSWi+cnmaE(sIARSCeWg/C)(;(n=QdRCgug1;)*eQ0kgtHfm)ozA)sf.w, FRiotgcrh=tinh3g2e
,PME =ax10DmuAty1C.8yVcle0.8==8104%mW, Qg = 100 nC, f = 20 kHz and
TAPMOAX= =(3 m85A°+C(:0.001 mA/nC kHz) 20 kHz 100 nC) 24V +
0.4 µJ 20 kHz = 128 mW 250 mW ( PO(MAX) @85 °C)
PE = 10 mA 1.8V 0.8 = 14 mW
PO = (3 mA + (0.001 mA/nC kHz) 20 kHz 100 nC) 24V +
0.4 µJ 20 kHz = 128 mW 250 mW ( PO(MAX) @85 °C)
The value of 3 mA for ICC in the previous equation is the
max. ICC over entire operating temperature range.
Since PO for this case is less than PO(MAX), Rg = 32 is
alright for the power dissipation.
PE = 10 mA 1.8V 0.8 = 14 mW
PO = (3 mA + (0.001 mA/nC kHz) 20 kHz 100 nC) 24V +
0.4 µJ
+5 V
20
kHz
=
128
mW
250
mW
(
P
O(MAX)
@85
°C)
270
1
ACPL-P314/W314
CONTROL
INPUT
2
74XXX
OPEN
3
COLLECTOR
Figure 20. Energy Dissipated in the ACPL-P314/W314 and for Each IGBT
Switching Cycle.
6
0.1 µF
5
4
+ VCC = 24V
-
Rg Q1
Q2
+ HVDC
3-PHASE
AC
- HVDC
Figure 19. Recommended LED Drive and Application Circuit for ACPL-P314/W314
11

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]