DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADP151(Rev0) 데이터 시트보기 (PDF) - Analog Devices

부품명
상세내역
제조사
ADP151
(Rev.:Rev0)
ADI
Analog Devices ADI
ADP151 Datasheet PDF : 24 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
VIN to GND
VOUT to GND
EN to GND
Storage Temperature Range
Operating Junction Temperature Range
Operating Ambient Temperature Range
Soldering Conditions
Rating
−0.3 V to +6.5 V
−0.3 V to VIN
−0.3 V to +6.5V
−65°C to +150°C
−40°C to +125°C
−40°C to +125°C
JEDEC J-STD-020
Stresses above those listed under absolute maximum ratings
may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or
any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL DATA
Absolute maximum ratings apply individually only, not in
combination. The ADP151 can be damaged when the junction
temperature limits are exceeded. Monitoring ambient temperature
does not guarantee that TJ is within the specified temperature
limits. In applications with high power dissipation and poor
thermal resistance, the maximum ambient temperature may
have to be derated.
In applications with moderate power dissipation and low PCB
thermal resistance, the maximum ambient temperature can
exceed the maximum limit as long as the junction temperature
is within specification limits. The junction temperature (TJ) of
the device is dependent on the ambient temperature (TA), the
power dissipation of the device (PD), and the junction-to-ambient
thermal resistance of the package (θJA).
Maximum junction temperature (TJ) is calculated from the
ambient temperature (TA) and power dissipation (PD) using the
formula
TJ = TA + (PD × θJA)
Junction-to-ambient thermal resistance (θJA) of the package is
based on modeling and calculation using a 4-layer board. The
junction-to-ambient thermal resistance is highly dependent on
the application and board layout. In applications where high
maximum power dissipation exists, close attention to thermal
board design is required. The value of JθA may vary, depending on
PCB material, layout, and environmental conditions. The
ADP151
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit
board. See JESD51-7 and JESD51-9 for detailed information
on the board construction. For additional information, see the
AN-617 Application Note, MicroCSPWafer Level Chip Scale
Package, available at www.analog.com.
ΨJB is the junction-to-board thermal characterization parameter
with units of °C/W. ΨJB of the package is based on modeling and
calculation using a 4-layer board. The JESD51-12, Guidelines for
Reporting and Using Electronic Package Thermal Information,
states that thermal characterization parameters are not the same
as thermal resistances. ΨJB measures the component power
flowing through multiple thermal paths rather than a single
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths
include convection from the top of the package as well as
radiation from the package, factors that make ΨJB more useful
in real-world applications. Maximum junction temperature (TJ)
is calculated from the board temperature (TB) and power
dissipation (PD) using the formula
TJ = TB + (PD × ΨJB)
See JESD51-8 and JESD51-12 for more detailed information
about ΨJB.
THERMAL RESISTANCE
θJA and ΨJB are specified for the worst-case conditions, that is, a
device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type
θJA
ΨJB
Unit
5-Lead TSOT
170
43
°C/W
4-Ball, 0.4 mm Pitch WLCSP 260
58
°C/W
ESD CAUTION
Rev. 0 | Page 5 of 24

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]