DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LT3580I 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
제조사
LT3580I Datasheet PDF : 28 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
LT3580
APPLICATIONS INFORMATION
these materials retain their capacitance over wider voltage
and temperature ranges. A 4.7μF to 20μF output capaci-
tor is sufficient for most applications, but systems with
very low output currents may need only a 1μF or 2.2μF
output capacitor. Always use a capacitor with a sufficient
voltage rating. Many capacitors rated at 2.2μF to 20μF,
particularly 0805 or 0603 case sizes, have greatly reduced
capacitance at the desired output voltage. Solid tantalum
or OS-CON capacitors can be used, but they will occupy
more board area than a ceramic and will have a higher
ESR with greater output ripple.
Ceramic capacitors also make a good choice for the input
decoupling capacitor, which should be placed as closely as
possible to the LT3580. A 2.2μF to 4.7μF input capacitor
is sufficient for most applications.
Table 2 shows a list of several ceramic capacitor manufac-
turers. Consult the manufacturers for detailed information
on their entire selection of ceramic parts.
Table 2. Ceramic Capacitor Manufacturers
Kemet
www.kemet.com
Murata
www.murata.com
Taiyo Yuden
www.t-yuden.com
Compensation—Adjustment
To compensate the feedback loop of the LT3580, a series
resistor-capacitor network in parallel with a single capacitor
should be connected from the VC pin to GND. For most
applications, the series capacitor should be in the range
of 470pF to 2.2nF with 1nF being a good starting value.
The parallel capacitor should range in value from 10pF to
100pF with 47pF a good starting value. The compensation
resistor, RC, is usually in the range of 5k to 50k. A good
technique to compensate a new application is to use a
100kΩ potentiometer in place of series resistor RC. With
the series capacitor and parallel capacitor at 1nF and 47pF
respectively, adjust the potentiometer while observing the
transient response and the optimum value for RC can be
found. Figures 3a to 3c illustrate this process for the circuit
of Figure 14 with a load current stepped between 400mA
and 500mA. Figure 3a shows the transient response with
RC equal to 1k. The phase margin is poor, as evidenced by
the excessive ringing in the output voltage and inductor
current. In Figure 3b, the value of RC is increased to 3k,
which results in a more damped response. Figure 3c
shows the results when RC is increased further to 10k. The
transient response is nicely damped and the compensation
procedure is complete.
VOUT
200mV/DIV
AC COUPLED
IL
0.5A/DIV
RC = 1k
200μs/DIV
3580 F03a
Figure 3a. Transient Response Shows Excessive Ringing
VOUT
200mV/DIV
AC COUPLED
IL
0.5A/DIV
RC = 3k
200μs/DIV
3580 F03b
Figure 3b. Transient Response Is Better
10
VOUT
200mV/DIV
AC COUPLED
IL
0.5A/DIV
RC = 10k
200μs/DIV
3580 F03c
Figure 3c. Transient Response Is Well Damped
3580fg

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]