DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LTC1741IFW 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
제조사
LTC1741IFW
Linear
Linear Technology Linear
LTC1741IFW Datasheet PDF : 20 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
LTC1741
APPLICATIO S I FOR ATIO
CONVERTER OPERATION
The LTC1741 is a CMOS pipelined multistep converter.
The converter has four pipelined ADC stages; a sampled
analog input will result in a digitized value five cycles later,
see the Timing Diagram section. The analog input is
differential for improved common mode noise immunity
and to maximize the input range. Additionally, the differen-
tial input drive will reduce even order harmonics of the
sample-and-hold circuit. The encode input is also
differential for improved common mode noise immunity.
The LTC1741 has two phases of operation, determined by
the state of the differential ENC/ENC input pins. For brev-
ity, the text will refer to ENC greater than ENC as ENC high
and ENC less than ENC as ENC low.
Each pipelined stage shown in Figure 1 contains an ADC,
a reconstruction DAC and an interstage residue amplifier.
In operation, the ADC quantizes the input to the stage and
the quantized value is subtracted from the input by the
DAC to produce a residue. The residue is amplified and
output by the residue amplifier. Successive stages operate
out of phase so that when the odd stages are outputting
their residue, the even stages are acquiring that residue
and visa versa.
When ENC is low, the analog input is sampled differentially
directly onto the input sample-and-hold capacitors, inside
the “Input S/H” shown in the block diagram. At the instant
that ENC transitions from low to high, the sampled input
is held. While ENC is high, the held input voltage is
buffered by the S/H amplifier which drives the first pipelined
ADC stage. The first stage acquires the output of the S/H
during this high phase of ENC. When ENC goes back low,
the first stage produces its residue which is acquired by
the second stage. At the same time, the input S/H goes
back to acquiring the analog input. When ENC goes back
high, the second stage produces its residue which is
acquired by the third stage. An identical process is re-
peated for the third stage, resulting in a third stage residue
that is sent to the fourth stage ADC for final evaluation.
Each ADC stage following the first has additional range to
accommodate flash and amplifier offset errors. Results
from all of the ADC stages are digitally synchronized such
that the results can be properly combined in the correction
logic before being sent to the output buffer.
SAMPLE/HOLD OPERATION AND INPUT DRIVE
Sample/Hold Operation
Figure 2 shows an equivalent circuit for the LTC1741
CMOS differential sample-and-hold. The differential ana-
log inputs are sampled directly onto sampling capacitors
(CSAMPLE) through CMOS transmission gates. This direct
capacitor sampling results in lowest possible noise for a
given sampling capacitor size. The capacitors shown
attached to each input (CPARASITIC) are the summation of
all other capacitance associated with each input.
During the sample phase when ENC/ENC is low, the
transmission gate connects the analog inputs to the sam-
pling capacitors and they charge to, and track the differen-
tial input voltage. When ENC/ENC transitions from low to
high the sampled input voltage is held on the sampling
capacitors. During the hold phase when ENC/ENC is high
the sampling capacitors are disconnected from the input
and the held voltage is passed to the ADC core for
processing. As ENC/ENC transitions from high to low the
inputs are reconnected to the sampling capacitors to
acquire a new sample. Since the sampling capacitors still
hold the previous sample, a charging glitch proportional to
the change in voltage between samples will be seen at this
LTC1741 VDD
CPARASITIC
AIN+
4pF
VDD
CPARASITIC
AIN–
4pF
5V
CSAMPLE
4pF
CSAMPLE
4pF
BIAS
2V
6k
ENC
ENC
6k
2V
Figure 2. Equivalent Input Circuit
1741 F02
1741f
11

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]