DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MAC08BT1(2000) 데이터 시트보기 (PDF) - ON Semiconductor

부품명
상세내역
제조사
MAC08BT1
(Rev.:2000)
ON-Semiconductor
ON Semiconductor ON-Semiconductor
MAC08BT1 Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
MAC08BT1, MAC08MT1
INFORMATION FOR USING THE SOT-223 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the
total design. The footprint for the semiconductor packages
must be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
0.15
3.8
0.079
2.0
0.091
2.3
0.091
2.3
0.079
2.0
0.059
1.5
0.059
1.5
0.059
1.5
SOT-223
0.248
6.3
inches
mm
SOT-223 POWER DISSIPATION
The power dissipation of the SOT-223 is a function of the
MT2 pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power
dissipation. Power dissipation for a surface mount device is
determined by TJ(max), the maximum rated junction
temperature of the die, RθJA, the thermal resistance from
the device junction to ambient, and the operating
temperature, TA. Using the values provided on the data
sheet for the SOT-223 package, PD can be calculated as
follows:
PD =
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values
into the equation for an ambient temperature TA of 25°C,
one can calculate the power dissipation of the device which
in this case is 550 milliwatts.
PD = 110°C – 25°C = 550 milliwatts
156°C/W
The 156°C/W for the SOT-223 package assumes the use
of the recommended footprint on a glass epoxy printed
circuit board to achieve a power dissipation of 550
milliwatts. There are other alternatives to achieving higher
power dissipation from the SOT-223 package. One is to
increase the area of the MT2 pad. By increasing the area of
the MT2 pad, the power dissipation can be increased.
Although one can almost double the power dissipation with
this method, one will be giving up area on the printed
circuit board which can defeat the purpose of using surface
mount technology. A graph of RθJA versus MT2 pad area is
shown in Figure 3.
Another alternative would be to use a ceramic substrate
or an aluminum core board such as Thermal Clad. Using
a board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads. A
solder stencil is required to screen the optimum amount of
solder paste onto the footprint. The stencil is made of brass
or stainless steel with a typical thickness of 0.008 inches.
The stencil opening size for the SOT-223 package should
be the same as the pad size on the printed circuit board, i.e.,
a 1:1 registration.
http://onsemi.com
8

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]